Kostenlose Beratung 0800 5770577 Mo. - Fr. von 8 bis 17 Uhr kostenfrei aus allen Netzen.

Customer Data Analyst

Kostenlos für Dich

durch Förderung

Der Kurs erläutert die Analyse und Optimierung von Kundenbeziehungen, die Programmierung mit Python, Statistik, Relationale Datenbanken mit SQL sowie spezifisches Fachwissen im Data Engineering und in der Datenanalyse. Weiter weißt du, wie Künstliche Intelligenz in deinem Beruf eingesetzt wird.
  • Abschlussart: Zertifikat „Customer Data Analyst“
  • Zusatzqualifikationen: Zertifikat „Kundenservice mit CRM“
    Zertifikat „Statistik“
    Zertifikat „Relationale Datenbanken-SQL“
    Zertifikat „Python“
    Zertifikat „Data Engineer“
    Zertifikat „Data Analytics“
  • Abschlussprüfung: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
  • Unterrichtszeiten: Vollzeit
    Montag bis Freitag von 08:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
  • Dauer: 24 Wochen

Kundenservice mit CRM

Grundlagen Customer Relationship Management (ca. 3 Tage)

Einführung in das Customer Relationship Management

Strategisches, analytisches, operatives CRM

Integrierte CRM-Lösungen: ERP-System, Datawarehouse, Data Mining und OLAP


Grundlagen Datenschutz (ca. 1 Tag)

Umgang mit Kundendaten

Speicherung und Weitergabe von Kundendaten

Datenschutz im Bereich Marketing/Werbemaßnahmen


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI‐Technologien im beruflichen Umfeld

Anwendungsmöglichkeiten und Praxis‐Übungen


Gewinnung und Bindung von Kundschaft (ca. 4 Tage)

Analyse der Kundenbedürfnisse

Kundenzufriedenheitsmanagement

Kundenkommunikation

Customer Experience (CX)

Psychologie der Kundenbeziehungen

Aufbau und Pflege von Kundendatenbanken

360 Grad-Kundenansicht

Ganzheitliches Fallmanagement


Umgang mit Kundendaten (ca. 4 Tage)

Verwaltung von Terminen, Verträgen und Budget

Kundenadministration

Workflows zwischen Teams

Bereinigung der Datenbank

Analytisches CRM (Zielgruppenanalyse, Kundenwertanalyse, Forecasts)

Echtzeit-Dashboards

Überblick über Leistungskennzahlen

Drilldown-Analyse

Inline-Datenvisualisierung

Auswertung von Verkaufschancen


Steigerung der Kundenprofitabilität (ca. 3 Tage)

Marketing

Gezielte Rückmeldungen

Segmentierungstools

Kampagnen-Management

Workflows

Lead-to-Cash-Transparenz

Echtzeit-Verkaufsprognosen

Pipeline-Berichte


Einführung CRM Software (ca. 2 Tage)

Übersicht in die CRM Systemlandschaft

Vorstellung und Positionierung verschiedener CRM-Systeme

Prozessabläufe abbilden


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Statistik

Statistische Grundlagen (ca. 6 Tage)

Messtheoretische Grundlagen (Grundgesamtheit und Stichprobe, Stichprobenarten, Messung und Skalenniveaus)

Univariate Deskriptivstatistik (Häufigkeitsverteilungen, Zentralmaße, Streuungsmaße, Standardwert, Histogramme, Balkendiagramme, Kreisdiagramme, Liniendiagramme und Boxplots)

Bivariate Deskriptivstatistik (Zusammenhangsmaße, Korrelationskoeffizienten, Kreuztabellen, Streudiagramme und gruppierte Balkendiagramme)

Grundlagen der induktiven Inferenzstatistik (Wahrscheinlichkeitsverteilung, Normalverteilung, Mittelwerteverteilung, Signifikanztest, Nullhypothesentest nach Fisher, Effektgröße, Parameterschätzung, Konfidenzintervalle, Fehlerbalkendiagramme, Poweranalysen und Ermittlung des optimalen Stichprobenumfangs)


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI-Technologien im beruflichen Umfeld

Anwendungsmöglichkeiten und Praxis-Übungen


Methoden zum Vergleich von zwei Gruppen (ca. 5 Tage)

z- und t-Test für eine Stichprobe (Abweichung von einem vorgegebenen Wert)

t-Test für den Mittelwertsunterschied von zwei unabhängigen/verbundenen Stichproben

Prüfung der Wirksamkeit von Aktionen, Maßnahmen, Interventionen und anderen Veränderungen mit t-Tests (Pretest-Posttest-Designs mit zwei Gruppen)

Unterstützende Signifikanztests (Anderson-Darling-Test, Ryan-Joiner-Test, Levene-Test, Bonnet-Test, Signifikanztest für Korrelationen)

Nonparametrische Verfahren (Wilcoxon-Test, Vorzeichentest, Mann-Whitney-Test)

Kontingenzanalysen (Binomialtest, Exakter Test nach Fisher, Chi-Quadrat-Test, Kreuztabellen mit Assoziationsmaße)


Methoden zum Mittelwertvergleich von mehreren Gruppen (ca. 5 Tage)

Ein- und zweifaktorielle Varianzanalyse (einfache und balancierte ANOVA)

Mehrfaktorielle Varianzanalyse (Allgemeines lineares Modell)

Feste, zufällige, gekreuzte und geschachtelte Faktoren

Mehrfachvergleichsverfahren (Tukey-HSD, Dunnett, Hsu-MCB, Games-Howell)

Interaktionsanalyse (Analyse von Wechselwirkungseffekten)

Trennschärfe und Poweranalyse bei Varianzanalysen


Einführung in die Versuchsplanung (DoE, Design of Experiments) (ca. 1 Tag)

Voll- und teilfaktorielle Versuchspläne


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Relationale Datenbanken mit SQL

Grundlagen von Datenbanksystemen mit Access (ca. 3 Tage)

Redundante Daten

Datenintegrität

Normalisierung

BCNF

DB-Entwurf

Beziehung 1:n, m:n

Datentypen

Tabellen

Primär- und Fremdschlüssel

Referentielle Integrität

Beziehungen zwischen Relationen

Entity-Relationship-Modell

Index, Standartwert

Einschränkungen (Check)

Abfragen

Formulare, Berichte

Zirkelbezug


Einführung in SQL Server Management Studio (SSMS) (ca. 2 Tage)

Übersicht

Phys. DB-Design

Tabellen erstellen

Datentypen in MS SQL

Primary Key

Einschränkungen, Standartwerte, Diagramm, Beziehungen

Backup und Restore


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI-Technologien im beruflichen Umfeld

Anwendungsmöglichkeiten und Praxis-Übungen


Einführung in DDL (ca. 8 Tage)

SQL Grundlagen

Syntax

Befehle

Mehrere Tabellen

Operatoren

Ablaufkontrolle

Skalarwertfunktionen

Tabellenwertfunktionen

Systemfunktionen

Prozeduren mit und ohne Parameter

Fehlertypen

Transaktionen, Sperren, DeadLock


DCL – Data Control Language (ca. 1 Tag)

Anmeldungen

Benutzer:innen

Rollen

Berechtigungen


Datentypen, Datenimport und -export (ca. 1 Tag)

Datentyp geography

Datenexport, Datenimport


Projektarbeit (ca. 5 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Programmierung mit Python

Grundlagen Python (ca. 1 Tag)

Geschichte, Konzepte

Verwendung und Einsatzgebiete

Syntax


Erste Schritte mit Python (ca. 5 Tage)

Zahlen

Zeichenketten

Datum und Zeit

Standardeingabe und -ausgabe

list, tuple dict, set

Verzweigungen und Schleifen (if, for, while)


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI-Technologien im beruflichen Umfeld

Anwendungsmöglichkeiten und Praxis-Übungen


Funktionen (ca. 5 Tage)

Eigene Funktionen definieren

Variablen

Parameter, Rekursion

Funktionale Programmierung


Fehlerbehebung (ca. 0,5 Tage)

try, except

Programmunterbrechungen abfangen


Objektorientierte Programmierung (ca. 4,5 Tage)

Python-Klassen

Methoden

Unveränderliche Objekte

Datenklasse

Vererbung


Grafische Benutzeroberfläche (ca. 1 Tag)

Buttons und Textfelder

grid-Layout

Dateiauswahl


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Data Engineer

Grundlagen Business Intelligence (ca. 2 Tage)

Anwendungsfelder, Dimensionen einer BI Architektur

Grundlagen Business Intelligence, OLAP, OLTP, Aufgaben der Data Engineers

Data Warehousing (DWH): Umgang und Verarbeitung von strukturierten, semi-strukturierten und unstrukturierten Daten


Anforderungsmanagement (ca. 2 Tage)

Aufgaben, Ziele und Vorgehensweise in der Anforderungsanalyse

Datenmodellierung, Einführung/Modellierung mit ERM

Einführung/Modellierung in der UML

· Klassendiagramme

· Use-Case Analyse

· Aktivitätsdiagramme


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI-Technologien im beruflichen Umfeld

Anwendungsmöglichkeiten und Praxis-Übungen


Datenbanken (ca. 3 Tage)

Grundlagen von Datenbanksystemen

Architektur von Datenbankmanagementsystemen

Anwendung RDBMS

Umsetzung Datenmodell in RDBMS, Normalformen

Praktische und theoretische Einführung in SQL

Grenzen von Relationalen Datenbanken, csv, json


Data Warehouse (ca. 4 Tage)

Star Schema

Datenmodellierung

Erstellung Star Schema in RDBMS

Snowflake Schema, Grundlagen, Datenmodellierung

Erstellung Snowflake Schema in RDBMS

Galaxy Schema: Grundlagen, Datenmodellierung

Slowly Changing Dimension Tables Typ 1 bis 5 – Restating, Stacking, Reorganizing, mini Dimension und Typ 5

Einführung in normal, causal, mini und monster, heterogeneous und sub Dimensions

Vergleich von state und transaction oriented

Faktentabellen, Density und Storage vom DWH


ETL (ca. 4 Tage)

Data Cleansing

· Null Values

· Aufbereitung von Daten

· Harmonisierung von Daten

· Anwendung von Regular Expressions

Data Understanding

· Datenvalidierung

· Statistische Datenanalyse

Datenschutz, Datensicherheit

Praktischer Aufbau von ETL-Strecken

Data Vault 2.0, Grundlagen, Hubs, Links, Satellites, Hash Key, Hash Diff.

Data Vault Datenmodellierung

Praktischer Aufbau eines Data Vault Modells – Raw Vault, Praktische Umsetzung von Hash-Verfahren


Projektarbeit (ca. 5 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Data Analytics

Einführung Datenanalyse (ca. 1 Tag)

CRISP-DM Referenzmodell

Data Analytics Workflows

Begriffsabgrenzung Künstliche Intelligenz, Machine Learning, Deep Learning

Anforderungen und Rolle im Unternehmen der Data Engineers, Data Scientists und Data Analysts


Wiederholung Grundlagen Python (ca. 1 Tag)

Datentypen

Funktionen


Datenanalyse (ca. 3 Tage)

Zentrale Python-Module im Kontext Data Analytics (NumPy, Pandas)

Prozess der Datenaufbereitung

Data Mining Algorithmen in Python


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI-Technologien im beruflichen Umfeld

Anwendungsmöglichkeiten und Praxis-Übungen


Datenvisualisierung (ca. 3 Tage)

Explorative Datenanalyse

Insights

Datenqualität

Nutzenanalyse

Visualisierung mit Python: Matplotlib, Seaborn, Plotly Express

Data Storytelling


Datenmanagement (ca. 2 Tage)

Big Data Architekturen

Relationale Datenbanken mit SQL

Vergleich von SQL- und NoSQL-Datenbanken

Business Intelligence

Datenschutz im Kontext der Datenanalyse


Datenanalyse im Big Data Kontext (ca. 1 Tag)

MapReduce-Ansatz

Spark

NoSQL


Dashboards (ca. 3 Tage)

Bibliothek: Dash

Aufbau von Dashboards – Dash Components

Customizing von Dashboards

Callbacks


Text Mining (ca. 1 Tag)

Data Preprocessing

Visualisierung

Bibliothek: SpaCy


Projektarbeit (ca. 5 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse



Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Nach dem Kurs kannst du Kundenbeziehungen analysieren und optimieren. Weiterhin verfügst du über ein kompaktes, grundlegendes Wissen in der Programmierung mit Python. Mit Statistik und SQL beherrschst du zwei essentielle Werkzeuge zur Verarbeitung, Darstellung und Analyse von Daten. Verbunden mit dem im Kurs vermittelten Fachwissen des Data Engineerings und der Datenanalyse bist du in der Lage, umfangreiche Datensätze zu managen, statistisch effizient auszuwerten und die Ergebnisse anschaulich und leicht verständlich zusammenzufassen.

Der Lehrgang richtet sich an Personen mit abgeschlossenem Studium in der BWL, Mathematik oder (Wirtschafts-)Informatik oder an Personen mit vergleichbarer Qualifikation, die sich mit Datenanalysen im Kundensegment befassen.

Als Customer Data Analyst findest du Einsatz in einer Vielzahl von Branchen und Unternehmen, wie beispielsweise im Marketing und der Telekommunikation, in E-Commerce-Unternehmen, im Einzelhandel oder in Finanzdienstleistungs- und Technologieunternehmen.

Didaktisches Konzept

Deine Dozierenden sind sowohl fachlich als auch didaktisch hoch qualifiziert und werden dich vom ersten bis zum letzten Tag unterrichten (kein Selbstlernsystem).

Du lernst in effektiven Kleingruppen. Die Kurse bestehen in der Regel aus 6 bis 25 Teilnehmenden. Der allgemeine Unterricht wird in allen Kursmodulen durch zahlreiche praxisbezogene Übungen ergänzt. Die Übungsphase ist ein wichtiger Bestandteil des Unterrichts, denn in dieser Zeit verarbeitest du das neu Erlernte und erlangst Sicherheit und Routine in der Anwendung. Im letzten Abschnitt des Lehrgangs findet eine Projektarbeit, eine Fallstudie oder eine Abschlussprüfung statt.

 

Virtueller Klassenraum alfaview®

Der Unterricht findet über die moderne Videotechnik alfaview® statt  - entweder bequem von zu Hause oder bei uns im Bildungszentrum. Über alfaview® kann sich der gesamte Kurs face-to-face sehen, in lippensynchroner Sprachqualität miteinander kommunizieren und an gemeinsamen Projekten arbeiten. Du kannst selbstverständlich auch deine zugeschalteten Trainer:innen jederzeit live sehen, mit diesen sprechen und du wirst während der gesamten Kursdauer von deinen Dozierenden in Echtzeit unterrichtet. Der Unterricht ist kein E-Learning, sondern echter Live-Präsenzunterricht über Videotechnik.

 

Alle Lehrgänge werden von der Agentur für Arbeit gefördert und sind nach der Zulassungsverordnung AZAV zertifiziert. Bei der Einreichung eines Bildungsgutscheines oder eines  Aktivierungs- und Vermittlungsgutscheines werden in der Regel die gesamten Lehrgangskosten von Ihrer Förderstelle übernommen.
Eine Förderung ist auch über den Europäischen Sozialfonds (ESF), die Deutsche Rentenversicherung (DRV) oder über regionale Förderprogramme möglich. Als Zeitsoldat:in besteht die Möglichkeit, Weiterbildungen über den Berufsförderungsdienst (BFD) zu besuchen. Auch Firmen können ihre Mitarbeiter:innen über eine Förderung der Agentur für Arbeit (Qualifizierungschancengesetz) qualifizieren lassen.